Papers
Topics
Authors
Recent
2000 character limit reached

Arbitrary high-order structure-preserving methods for the quantum Zakharov system

Published 26 Feb 2022 in math.NA and cs.NA | (2202.13052v3)

Abstract: In this paper, we present a new methodology to develop arbitrary high-order structure-preserving methods for solving the quantum Zakharov system. The key ingredients of our method are: (i) the original Hamiltonian energy is reformulated into a quadratic form by introducing a new quadratic auxiliary variable; (ii) based on the energy variational principle, the original system is then rewritten into a new equivalent system which inherits the mass conservation law and a quadratic energy; (iii) the resulting system is discretized by symplectic Runge-Kutta method in time combining with the Fourier pseudo-spectral method in space. The proposed method achieves arbitrary high-order accurate in time and can preserve the discrete mass and original Hamiltonian energy exactly. Moreover, an efficient iterative solver is presented to solve the resulting discrete nonlinear equations. Finally, ample numerical examples are presented to demonstrate the theoretical claims and illustrate the efficiency of our methods.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.