Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Systematic Literature Review about Idea Mining: The Use of Machine-driven Analytics to Generate Ideas (2202.12826v1)

Published 30 Jan 2022 in cs.IR, cs.CL, and cs.LG

Abstract: Idea generation is the core activity of innovation. Digital data sources, which are sources of innovation, such as patents, publications, social media, websites, etc., are increasingly growing at unprecedented volume. Manual idea generation is time-consuming and is affected by the subjectivity of the individuals involved. Therefore, the use machine-driven data analytics techniques to analyze data to generate ideas and support idea generation by serving users is useful. The objective of this study is to study state-of the-art machine-driven analytics for idea generation and data sources, hence the result of this study will generally server as a guideline for choosing techniques and data sources. A systematic literature review is conducted to identify relevant scholarly literature from IEEE, Scopus, Web of Science and Google Scholar. We selected a total of 71 articles and analyzed them thematically. The results of this study indicate that idea generation through machine-driven analytics applies text mining, information retrieval (IR), AI, deep learning, machine learning, statistical techniques, NLP, NLP-based morphological analysis, network analysis, and bibliometric to support idea generation. The results include a list of techniques and procedures in idea generation through machine-driven idea analytics. Additionally, characterization and heuristics used in idea generation are summarized. For the future, tools designed to generate ideas could be explored.

Citations (6)

Summary

We haven't generated a summary for this paper yet.