Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust random walk-like Metropolis-Hastings algorithms for concentrating posteriors (2202.12127v1)

Published 24 Feb 2022 in stat.CO, cs.NA, math.NA, math.PR, math.ST, and stat.TH

Abstract: Motivated by Bayesian inference with highly informative data we analyze the performance of random walk-like Metropolis-Hastings algorithms for approximate sampling of increasingly concentrating target distributions. We focus on Gaussian proposals which use a Hessian-based approximation of the target covariance. By means of pushforward transition kernels we show that for Gaussian target measures the spectral gap of the corresponding Metropolis-Hastings algorithm is independent of the concentration of the posterior, i.e., the noise level in the observational data that is used for Bayesian inference. Moreover, by exploiting the convergence of the concentrating posteriors to their Laplace approximation we extend the analysis to non-Gaussian target measures which either concentrate around a single point or along a linear manifold. In particular, in that setting we show that the average acceptance rate as well as the expected squared jump distance of suitable Metropolis-Hastings Markov chains do not deteriorate as the target concentrates.

Citations (6)

Summary

We haven't generated a summary for this paper yet.