Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semidefinite games (2202.12035v3)

Published 24 Feb 2022 in math.OC and cs.GT

Abstract: We introduce and study the class of semidefinite games, which generalizes bimatrix games and finite $N$-person games, by replacing the simplex of the mixed strategies for each player by a slice of the positive semidefinite cone in the space of real symmetric matrices. For semidefinite two-player zero-sum games, we show that the optimal strategies can be computed by semidefinite programming. Furthermore, we show that two-player semidefinite zero-sum games are almost equivalent to semidefinite programming, generalizing Dantzig's result on the almost equivalence of bimatrix games and linear programming. For general two-player semidefinite games, we prove a spectrahedral characterization of the Nash equilibria. Moreover, we give constructions of semidefinite games with many Nash equilibria. In particular, we give a construction of semidefinite games whose number of connected components of Nash equilibria exceeds the long standing best known construction for many Nash equilibria in bimatrix games, which was presented by von Stengel in 1999.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. I. Adler. The equivalence of linear programs and zero-sum games. Internat. J. Game Theory, 42(1):165–177, 2013.
  2. Fast algorithms for rank-1 bimatrix games. Oper. Res., 69(2):613–631, 2021.
  3. A. A. Ahmadi and J. Zhang. Semidefinite programming and Nash equilibria in bimatrix games. INFORMS J. Comput., 33(2):607–628, 2021.
  4. Tropical complementarity problems and Nash equilibria. SIAM J. Discrete Math., 37(3):1645–1665, 2023.
  5. Quantum bilinear optimization. SIAM J. Optim., 26(3):1529–1564, 2016.
  6. P. Bich and J. Fixary. Oddness of the number of Nash equilibria: the case of polynomial payoff functions. Working paper 2021.27, Centre d’Économie de la Sorbonne, 2021.
  7. Semidefinite Optimization and Convex Algebraic Geometry. SIAM, Philadelphia, 2013.
  8. A geometric-combinatorial approach to bimatrix games. Methods Oper. Res., 59:199–209, 1989.
  9. J. Bostanci and J. Watrous. Quantum game theory and the complexity of approximating quantum Nash equilibria. Quantum, 6:882, 2021.
  10. Zero-sum polymatrix games: A generalization of minmax. Math. Oper. Res., 41(2):648–655, 2016.
  11. G. B. Dantzig. A proof of the equivalence of the programming problem and the game problem. In T. Koopmans, editor, Activity Analysis of Production and Allocation, volume 13 of Cowles Commission Monograph. John Wiley & Sons, 1951.
  12. R. S. Datta. Universality of Nash equilibria. Math. Oper. Res., 28(3):424–432, 2003.
  13. G. Debreu. A social equilibrium existence theorem. Proc. Nat. Acad. Sci., 38(10):886–893, 1952.
  14. M. Dresher and S. Karlin. Solutions of convex games as fixed points. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games II, volume 28 of Annals of Math. Studies, pages 75–86. Princeton University Press, 1953.
  15. Polynomial games. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games I, volume 24 of Annals of Math, Studies, pages 161–180. Princeton University Press, Princeton, NJ, 1950.
  16. K. Fan. Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci., 38(2):121–126, 1952.
  17. I. L. Glicksberg. A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Amer. Math. Soc., 3(1):170–174, 1952.
  18. An Introductory Course on Mathematical Game Theory. Amer. Math. Soc. and Real Sociedad Matemática Española, 2010.
  19. A survey of quantum games. Decision Support Systems, 46(1):318–332, 2008.
  20. G. Gutoski and J. Watrous. Toward a general theory of quantum games. In Proc. 39th ACM Symposium Theory of Computing (STOC), pages 565–574, 2007.
  21. Exact algorithms for solving stochastic games. In Proc. 43rd ACM Symposium Theory of Computing (STOC), pages 205–214, 2011.
  22. Semidefinite network games: multiplayer minimax and complementarity problems. Preprint, arXiv:2310.20333, 2023.
  23. R. Jain and J. Watrous. Parallel approximation of non-interactive zero-sum quantum games. In In Proc 24th Annual IEEE Conference on Computational Complexity, pages 243–253. IEEE, 2009.
  24. R. Kannan and T. Theobald. Games of fixed rank: A hierarchy of bimatrix games. Econ. Theory, 42(1):157–173, 2010.
  25. A. R. Karlin and Y. Peres. Game Theory, Alive. Amer. Math. Soc., Providence, 2017.
  26. Quantum games: a review of the history, current state, and interpretation. Quantum Inform. Process., 17(11):1–42, 2018.
  27. S. Landsburg. Nash equilibria in quantum games. Proc. Amer. Math. Soc., 139(12):4423–4434, 2011.
  28. R. Laraki and J. B. Lasserre. Semidefinite programming for min–max problems and games. Math. Program., 131:305–332, 2012.
  29. O. L. Mangasarian. Equilibrium points of bimatrix games. J. Soc. Industr. Appl. Math., 12:778–780, 1964.
  30. D. A. Meyer. Quantum strategies. Phys. Rev. Lett., 82(5):1052, 1999.
  31. J. Nie and X. Tang. Nash equilibrium problems of polynomials. Preprint, arXiv:2006.09490, 2020.
  32. J. Nie and X. Tang. Convex generalized Nash equilibrium problems and polynomial optimization. Math. Program., 198:1485–1518, 2023.
  33. M. A. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Amer. Assoc. Physics Teachers, 2002.
  34. M. Oliu-Barton. New algorithms for solving zero-sum stochastic games. Math. Oper. Res., 46(1):255–267, 2021.
  35. L. Pahl. Polytope-form games and index/degree theories for extensive-form games. Games Econ. Behav., 141:444–471, 2023.
  36. P. A. Parrilo. Polynomial games and sum of squares optimization. In Proc. 45th IEEE Conf. Decision and Control, pages 2855–2860. IEEE, 2006.
  37. I. Portakal and B. Sturmfels. Geometry of dependency equilibria. Rend. Ist. Mat. Univ. Trieste, 54, article no. 5, 2022.
  38. Completely positive semidefinite rank. Math. Program., 171(1):397–431, 2018.
  39. A. Predtetchinski. A general structure theorem for the Nash equilibrium correspondence. Games and Econ. Behav., 66(2):950–958, 2009.
  40. T. Quint and M. Shubik. A theorem on the number of Nash equilibria in a bimatrix game. Internat. J. Game Theory, 26(3):353–359, 1997.
  41. P. Rostalski and B. Sturmfels. Dualities in convex algebraic geometry. Rend. Mat. Appl., VII. Ser., 30(3-4):285–327, 2010.
  42. C. Scheiderer. Spectrahedral shadows. SIAM J. Applied Algebra & Geometry, 2(1):26—44, 2018.
  43. L. S. Shapley. Stochastic games. Proc. National Acad. Sci., 39(10):1095–1100, 1953.
  44. J. Sikora and A. Varvitsiotis. Linear conic formulations for two-party correlations and values of nonlocal games. Math. Program., 162(1-2):431–463, 2017.
  45. Separable and low-rank continuous games. Internat. J. Game Theory, 37(4):475–504, 2008.
  46. Correlated equilibria in continuous games: Characterization and computation. Games Econ. Behavior, 71(2):436–455, 2011.
  47. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49–95, 1996.
  48. J. von Neumann. A model of general economic equilibrium. The Review of Economic Studies, 13(1):1–9, 1945.
  49. B. von Stengel. New maximal numbers of equilibria in bimatrix games. Disc. Comp. Geom., 21:557–568, 1999.
  50. B. von Stengel. Computing equilibria for two-person games. Handbook of Game Theory With Economic Applications, 3:1723–1759, 2002.
  51. B. von Stengel. Zero-sum games and linear programming duality. Preprint, arXiv:2205.11196, 2022.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com