Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
93 tokens/sec
Gemini 2.5 Pro Premium
54 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
225 tokens/sec
2000 character limit reached

No-Regret Learning in Games is Turing Complete (2202.11871v1)

Published 24 Feb 2022 in cs.GT, cs.LG, and math.DS

Abstract: Games are natural models for multi-agent machine learning settings, such as generative adversarial networks (GANs). The desirable outcomes from algorithmic interactions in these games are encoded as game theoretic equilibrium concepts, e.g. Nash and coarse correlated equilibria. As directly computing an equilibrium is typically impractical, one often aims to design learning algorithms that iteratively converge to equilibria. A growing body of negative results casts doubt on this goal, from non-convergence to chaotic and even arbitrary behaviour. In this paper we add a strong negative result to this list: learning in games is Turing complete. Specifically, we prove Turing completeness of the replicator dynamic on matrix games, one of the simplest possible settings. Our results imply the undecicability of reachability problems for learning algorithms in games, a special case of which is determining equilibrium convergence.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.