Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A gentle introduction to Quantum Natural Language Processing (2202.11766v1)

Published 23 Feb 2022 in cs.CL

Abstract: The main goal of this master's thesis is to introduce Quantum Natural Language Processing (QNLP) in a way understandable by both the NLP engineer and the quantum computing practitioner. QNLP is a recent application of quantum computing that aims at representing sentences' meaning as vectors encoded into quantum computers. To achieve this, the distributional meaning of words is extended by the compositional meaning of sentences (DisCoCat model) : the vectors representing words' meanings are composed through the syntactic structure of the sentence. This is done using an algorithm based on tensor products. We see that this algorithm is inefficient on classical computers but scales well using quantum circuits. After exposing the practical details of its implementation, we go through three use-cases.

Citations (7)

Summary

We haven't generated a summary for this paper yet.