Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and Succinct Population Protocols for Presburger Arithmetic (2202.11601v3)

Published 23 Feb 2022 in cs.DC

Abstract: In their 2006 seminal paper in Distributed Computing, Angluin et al. present a construction that, given any Presburger predicate as input, outputs a leaderless population protocol that decides the predicate. The protocol for a predicate of size $m$ (when expressed as a Boolean combination of threshold and remainder predicates with coefficients in binary) runs in $\mathcal{O}(m \cdot n2 \log n)$ expected number of interactions, which is almost optimal in $n$. However, the number of states of the protocol is exponential in $m$. Blondin et al. described in STACS 2020 another construction that produces protocols with a polynomial number of states, but exponential expected number of interactions. We present a construction that produces protocols with $\mathcal{O}(m)$ states that run in expected $\mathcal{O}(m{7} \cdot n2)$ interactions, optimal in $n$, for all inputs of size $\Omega(m)$. For this we introduce population computers, a carefully crafted generalization of population protocols easier to program, and show that our computers for Presburger predicates can be translated into fast and succinct population protocols.

Citations (9)

Summary

We haven't generated a summary for this paper yet.