Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Study of Deep Reinforcement Learning-based Transferable Energy Management Strategies for Hybrid Electric Vehicles (2202.11514v2)

Published 22 Feb 2022 in cs.LG, cs.AI, cs.SY, and eess.SY

Abstract: The deep reinforcement learning-based energy management strategies (EMS) have become a promising solution for hybrid electric vehicles (HEVs). When driving cycles are changed, the neural network will be retrained, which is a time-consuming and laborious task. A more efficient way of choosing EMS is to combine deep reinforcement learning (DRL) with transfer learning, which can transfer knowledge of one domain to the other new domain, making the network of the new domain reach convergence values quickly. Different exploration methods of DRL, including adding action space noise and parameter space noise, are compared against each other in the transfer learning process in this work. Results indicate that the network added parameter space noise is more stable and faster convergent than the others. In conclusion, the best exploration method for transferable EMS is to add noise in the parameter space, while the combination of action space noise and parameter space noise generally performs poorly. Our code is available at https://github.com/BIT-XJY/RL-based-Transferable-EMS.git.

Citations (12)

Summary

We haven't generated a summary for this paper yet.