Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential Tail Local Rademacher Complexity Risk Bounds Without the Bernstein Condition (2202.11461v1)

Published 23 Feb 2022 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: The local Rademacher complexity framework is one of the most successful general-purpose toolboxes for establishing sharp excess risk bounds for statistical estimators based on the framework of empirical risk minimization. Applying this toolbox typically requires using the Bernstein condition, which often restricts applicability to convex and proper settings. Recent years have witnessed several examples of problems where optimal statistical performance is only achievable via non-convex and improper estimators originating from aggregation theory, including the fundamental problem of model selection. These examples are currently outside of the reach of the classical localization theory. In this work, we build upon the recent approach to localization via offset Rademacher complexities, for which a general high-probability theory has yet to be established. Our main result is an exponential-tail excess risk bound expressed in terms of the offset Rademacher complexity that yields results at least as sharp as those obtainable via the classical theory. However, our bound applies under an estimator-dependent geometric condition (the "offset condition") instead of the estimator-independent (but, in general, distribution-dependent) Bernstein condition on which the classical theory relies. Our results apply to improper prediction regimes not directly covered by the classical theory.

Citations (10)

Summary

We haven't generated a summary for this paper yet.