Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Differential Attention Fusion Model Based on Transformer for Time Series Forecasting (2202.11402v1)

Published 23 Feb 2022 in cs.LG

Abstract: Time series forecasting is widely used in the fields of equipment life cycle forecasting, weather forecasting, traffic flow forecasting, and other fields. Recently, some scholars have tried to apply Transformer to time series forecasting because of its powerful parallel training ability. However, the existing Transformer methods do not pay enough attention to the small time segments that play a decisive role in prediction, making it insensitive to small changes that affect the trend of time series, and it is difficult to effectively learn continuous time-dependent features. To solve this problem, we propose a differential attention fusion model based on Transformer, which designs the differential layer, neighbor attention, sliding fusion mechanism, and residual layer on the basis of classical Transformer architecture. Specifically, the differences of adjacent time points are extracted and focused by difference and neighbor attention. The sliding fusion mechanism fuses various features of each time point so that the data can participate in encoding and decoding without losing important information. The residual layer including convolution and LSTM further learns the dependence between time points and enables our model to carry out deeper training. A large number of experiments on three datasets show that the prediction results produced by our method are favorably comparable to the state-of-the-art.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Benhan Li (2 papers)
  2. Shengdong Du (10 papers)
  3. Tianrui Li (86 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.