How Fast Can We Play Tetris Greedily With Rectangular Pieces? (2202.10771v2)
Abstract: Consider a variant of Tetris played on a board of width $w$ and infinite height, where the pieces are axis-aligned rectangles of arbitrary integer dimensions, the pieces can only be moved before letting them drop, and a row does not disappear once it is full. Suppose we want to follow a greedy strategy: let each rectangle fall where it will end up the lowest given the current state of the board. To do so, we want a data structure which can always suggest a greedy move. In other words, we want a data structure which maintains a set of $O(n)$ rectangles, supports queries which return where to drop the rectangle, and updates which insert a rectangle dropped at a certain position and return the height of the highest point in the updated set of rectangles. We show via a reduction to the Multiphase problem [P\u{a}tra\c{s}cu, 2010] that on a board of width $w=\Theta(n)$, if the OMv conjecture [Henzinger et al., 2015] is true, then both operations cannot be supported in time $O(n{1/2-\epsilon})$ simultaneously. The reduction also implies polynomial bounds from the 3-SUM conjecture and the APSP conjecture. On the other hand, we show that there is a data structure supporting both operations in $O(n{1/2}\log{3/2}n)$ time on boards of width $n{O(1)}$, matching the lower bound up to a $n{o(1)}$ factor.