Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and non-existence of global solutions for a heat equation with degenerate coefficients (2202.10493v1)

Published 21 Feb 2022 in math.AP

Abstract: In this paper, we will study the following parabolic problem $u_t - div(\omega(x) \nabla u)= h(t) f(u) + l(t) g(u)$ with non-negative initial conditions pertaining to $C_b(\mathbb{R}N)$, where the weight $\omega$ is an appropriate function that belongs to the Munckenhoupt class $A_{1 + \frac{2}{N}}$ and the functions $f$, $g$, $h$ and $l$ are non-negative and continuous. The main goal is to establish of global and non-global existence of non-negative solutions. In addition, to present the particular case when $h(t) \sim tr ~~ (r>-1)$, $l(t) \sim ts ~~ (s>-1)$, $f(u) = up$ and $g(u)= (1+u)[\ln(1+u)]p,$ we obtain both the so-called Fujita's exponent and the second critical exponent in the sense of Lee and Ni \cite{Lee-Ni}. Our results extend those obtained by Fujishima et al. \cite{Fujish} who worked when $h(t)=1$, $l(t)=0$ and $f(u)=up $.

Summary

We haven't generated a summary for this paper yet.