Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the bias of K-fold cross validation with stable learners (2202.10211v2)

Published 21 Feb 2022 in math.ST and stat.TH

Abstract: This paper investigates the efficiency of the K-fold cross-validation (CV) procedure and a debiased version thereof as a means of estimating the generalization risk of a learning algorithm. We work under the general assumption of uniform algorithmic stability. We show that the K-fold risk estimate may not be consistent under such general stability assumptions, by constructing non vanishing lower bounds on the error in realistic contexts such as regularized empirical risk minimisation and stochastic gradient descent. We thus advocate the use of a debiased version of the K-fold and prove an error bound with exponential tail decay regarding this version. Our result is applicable to the large class of uniformly stable algorithms, contrarily to earlier works focusing on specific tasks such as density estimation. We illustrate the relevance of the debiased K-fold CV on a simple model selection problem and demonstrate empirically the usefulness of the promoted approach on real world classification and regression datasets.

Summary

We haven't generated a summary for this paper yet.