Papers
Topics
Authors
Recent
2000 character limit reached

SPNet: A novel deep neural network for retinal vessel segmentation based on shared decoder and pyramid-like loss

Published 19 Feb 2022 in eess.IV and cs.CV | (2202.09515v1)

Abstract: Segmentation of retinal vessel images is critical to the diagnosis of retinopathy. Recently, convolutional neural networks have shown significant ability to extract the blood vessel structure. However, it remains challenging to refined segmentation for the capillaries and the edges of retinal vessels due to thickness inconsistencies and blurry boundaries. In this paper, we propose a novel deep neural network for retinal vessel segmentation based on shared decoder and pyramid-like loss (SPNet) to address the above problems. Specifically, we introduce a decoder-sharing mechanism to capture multi-scale semantic information, where feature maps at diverse scales are decoded through a sequence of weight-sharing decoder modules. Also, to strengthen characterization on the capillaries and the edges of blood vessels, we define a residual pyramid architecture which decomposes the spatial information in the decoding phase. A pyramid-like loss function is designed to compensate possible segmentation errors progressively. Experimental results on public benchmarks show that the proposed method outperforms the backbone network and the state-of-the-art methods, especially in the regions of the capillaries and the vessel contours. In addition, performances on cross-datasets verify that SPNet shows stronger generalization ability.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.