Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

iMARS: An In-Memory-Computing Architecture for Recommendation Systems (2202.09433v1)

Published 18 Feb 2022 in cs.AR

Abstract: Recommendation systems (RecSys) suggest items to users by predicting their preferences based on historical data. Typical RecSys handle large embedding tables and many embedding table related operations. The memory size and bandwidth of the conventional computer architecture restrict the performance of RecSys. This work proposes an in-memory-computing (IMC) architecture (iMARS) for accelerating the filtering and ranking stages of deep neural network-based RecSys. iMARS leverages IMC-friendly embedding tables implemented inside a ferroelectric FET based IMC fabric. Circuit-level and system-level evaluation show that \fw achieves 16.8x (713x) end-to-end latency (energy) improvement compared to the GPU counterpart for the MovieLens dataset.

Citations (15)

Summary

We haven't generated a summary for this paper yet.