Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Adaptive Finite Element DtN Method for Maxwell's Equations (2202.09203v1)

Published 18 Feb 2022 in math.NA and cs.NA

Abstract: This paper is concerned with a numerical solution to the scattering of a time-harmonic electromagnetic wave by a bounded and impenetrable obstacle in three dimensions. The electromagnetic wave propagation is modeled by a boundary value problem of Maxwell's equations in the exterior domain of the obstacle. Based on the Dirichlet-to-Neumann (DtN) operator, which is defined by an infinite series, an exact transparent boundary condition is introduced and the scattering problem is reduced equivalently into a bounded domain. An a posteriori error estimate based adaptive finite element DtN method is developed to solve the discrete variational problem, where the DtN operator is truncated into a sum of finitely many terms. The a posteriori error estimate takes into account both the finite element approximation error and the truncation error of the DtN operator. The latter is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to illustrate the effectiveness of the proposed method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.