Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enumeration of corner polyhedra and 3-connected Schnyder labelings (2202.09172v3)

Published 18 Feb 2022 in math.CO and cs.DM

Abstract: We show that corner polyhedra and 3-connected Schnyder labelings join the growing list of planar structures that can be set in exact correspondence with (weighted) models of quadrant walks via a bijection due to Kenyon, Miller, Sheffield and Wilson. Our approach leads to a first polynomial time algorithm to count these structures, and to the determination of their exact asymptotic growth constants: the number $p_n$ of corner polyhedra and $s_n$ of 3-connected Schnyder labelings of size $n$ respectively satisfy $(p_n){1/n}\to 9/2$ and $(s_n){1/n}\to 16/3$ as $n$ goes to infinity. While the growth rates are rational, like in the case of previously known instances of such correspondences, the exponent of the asymptotic polynomial correction to the exponential growth does not appear to follow from the now standard Denisov-Wachtel approach, due to a bimodal behavior of the step set of the underlying tandem walk. However a heuristic argument suggests that these exponents are $-1-\pi/\arccos(9/16)\approx -4.23$ for $p_n$ and $-1-\pi/\arccos(22/27)\approx -6.08$ for $s_n$, which would imply that the associated series are not D-finite.

Citations (2)

Summary

We haven't generated a summary for this paper yet.