Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning models and facial regions videos for estimating heart rate: a review on Patents, Datasets and Literature (2202.08913v1)

Published 17 Feb 2022 in cs.LG, cs.CV, and eess.IV

Abstract: Estimating heart rate is important for monitoring users in various situations. Estimates based on facial videos are increasingly being researched because it makes it possible to monitor cardiac information in a non-invasive way and because the devices are simpler, requiring only cameras that capture the user's face. From these videos of the user's face, machine learning is able to estimate heart rate. This study investigates the benefits and challenges of using machine learning models to estimate heart rate from facial videos, through patents, datasets, and articles review. We searched Derwent Innovation, IEEE Xplore, Scopus, and Web of Science knowledge bases and identified 7 patent filings, 11 datasets, and 20 articles on heart rate, photoplethysmography, or electrocardiogram data. In terms of patents, we note the advantages of inventions related to heart rate estimation, as described by the authors. In terms of datasets, we discovered that most of them are for academic purposes and with different signs and annotations that allow coverage for subjects other than heartbeat estimation. In terms of articles, we discovered techniques, such as extracting regions of interest for heart rate reading and using Video Magnification for small motion extraction, and models such as EVM-CNN and VGG-16, that extract the observed individual's heart rate, the best regions of interest for signal extraction and ways to process them.

Citations (7)

Summary

We haven't generated a summary for this paper yet.