Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Verifiable Federated Learning (2202.08310v1)

Published 15 Feb 2022 in cs.CR, cs.AI, cs.DC, and cs.LG

Abstract: Federated learning (FL) is an emerging paradigm of collaborative machine learning that preserves user privacy while building powerful models. Nevertheless, due to the nature of open participation by self-interested entities, it needs to guard against potential misbehaviours by legitimate FL participants. FL verification techniques are promising solutions for this problem. They have been shown to effectively enhance the reliability of FL networks and help build trust among participants. Verifiable federated learning has become an emerging topic of research that has attracted significant interest from the academia and the industry alike. Currently, there is no comprehensive survey on the field of verifiable federated learning, which is interdisciplinary in nature and can be challenging for researchers to enter into. In this paper, we bridge this gap by reviewing works focusing on verifiable FL. We propose a novel taxonomy for verifiable FL covering both centralised and decentralised FL settings, summarise the commonly adopted performance evaluation approaches, and discuss promising directions towards a versatile verifiable FL framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yanci Zhang (7 papers)
  2. Han Yu (218 papers)
Citations (16)