Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cost-Efficient Distributed Learning via Combinatorial Multi-Armed Bandits (2202.08302v2)

Published 16 Feb 2022 in cs.IT, cs.DC, cs.LG, math.IT, and stat.ML

Abstract: We consider the distributed SGD problem, where a main node distributes gradient calculations among $n$ workers. By assigning tasks to all the workers and waiting only for the $k$ fastest ones, the main node can trade-off the algorithm's error with its runtime by gradually increasing $k$ as the algorithm evolves. However, this strategy, referred to as adaptive $k$-sync, neglects the cost of unused computations and of communicating models to workers that reveal a straggling behavior. We propose a cost-efficient scheme that assigns tasks only to $k$ workers, and gradually increases $k$. We introduce the use of a combinatorial multi-armed bandit model to learn which workers are the fastest while assigning gradient calculations. Assuming workers with exponentially distributed response times parameterized by different means, we give empirical and theoretical guarantees on the regret of our strategy, i.e., the extra time spent to learn the mean response times of the workers. Furthermore, we propose and analyze a strategy applicable to a large class of response time distributions. Compared to adaptive $k$-sync, our scheme achieves significantly lower errors with the same computational efforts and less downlink communication while being inferior in terms of speed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.