Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Code Generation for Unknown Libraries via Reading API Documentations (2202.07806v1)

Published 16 Feb 2022 in cs.CL

Abstract: Open-domain code generation is a challenging problem because the set of functions and classes that we use are frequently changed and extended in programming communities. We consider the challenge of code generation for unknown libraries without additional training. In this paper, we explore a framework of code generation that can refer to relevant API documentations like human programmers to handle unknown libraries. As a first step of this direction, we implement a model that can extract relevant code signatures from API documentations based on a natural language intent and copy primitives from the extracted signatures. Moreover, to evaluate code generation for unknown libraries and our framework, we extend an existing dataset of open-domain code generation and resplit it so that the evaluation data consist of only examples using the libraries that do not appear in the training data. Experiments on our new split show that baseline encoder-decoder models cannot generate code using primitives of unknown libraries as expected. In contrast, our model outperforms the baseline on the new split and can properly generate unknown primitives when extracted code signatures are noiseless.

Citations (2)

Summary

We haven't generated a summary for this paper yet.