Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heuristic computation of exact treewidth (2202.07793v1)

Published 15 Feb 2022 in cs.DS

Abstract: We are interested in computing the treewidth $\tw(G)$ of a given graph $G$. Our approach is to design heuristic algorithms for computing a sequence of improving upper bounds and a sequence of improving lower bounds, which would hopefully converge to $\tw(G)$ from both sides. The upper bound algorithm extends and simplifies Tamaki's unpublished work on a heuristic use of the dynamic programming algorithm for deciding treewidth due to Bouchitt\'{e} and Todinca. The lower bound algorithm is based on the well-known fact that, for every minor $H$ of $G$, we have $\tw(H) \leq \tw(G)$. Starting from a greedily computed minor $H_0$ of $G$, the algorithm tries to construct a sequence of minors $H_0$, $H_1$, \ldots $H_k$ with $\tw(H_i) < \tw(H_{i + 1})$ for $0 \leq i < k$ and hopefully $\tw(H_k) = \tw(G)$. We have implemented a treewidth solver based on this approach and have evaluated it on the bonus instances from the exact treewidth track of PACE 2017 algorithm implementation challenge. The results show that our approach is extremely effective in tackling instances that are hard for conventional solvers. Our solver has an additional advantage over conventional ones in that it attaches a compact certificate to the lower bound it computes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.