Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Architecture Agnostic Federated Learning for Neural Networks (2202.07757v3)

Published 15 Feb 2022 in cs.LG

Abstract: With growing concerns regarding data privacy and rapid increase in data volume, Federated Learning(FL) has become an important learning paradigm. However, jointly learning a deep neural network model in a FL setting proves to be a non-trivial task because of the complexities associated with the neural networks, such as varied architectures across clients, permutation invariance of the neurons, and presence of non-linear transformations in each layer. This work introduces a novel Federated Heterogeneous Neural Networks (FedHeNN) framework that allows each client to build a personalised model without enforcing a common architecture across clients. This allows each client to optimize with respect to local data and compute constraints, while still benefiting from the learnings of other (potentially more powerful) clients. The key idea of FedHeNN is to use the instance-level representations obtained from peer clients to guide the simultaneous training on each client. The extensive experimental results demonstrate that the FedHeNN framework is capable of learning better performing models on clients in both the settings of homogeneous and heterogeneous architectures across clients.

Citations (31)

Summary

We haven't generated a summary for this paper yet.