Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Subjective Quality Study for Video Frame Interpolation (2202.07727v2)

Published 15 Feb 2022 in eess.IV and cs.CV

Abstract: Video frame interpolation (VFI) is one of the fundamental research areas in video processing and there has been extensive research on novel and enhanced interpolation algorithms. The same is not true for quality assessment of the interpolated content. In this paper, we describe a subjective quality study for VFI based on a newly developed video database, BVI-VFI. BVI-VFI contains 36 reference sequences at three different frame rates and 180 distorted videos generated using five conventional and learning based VFI algorithms. Subjective opinion scores have been collected from 60 human participants, and then employed to evaluate eight popular quality metrics, including PSNR, SSIM and LPIPS which are all commonly used for assessing VFI methods. The results indicate that none of these metrics provide acceptable correlation with the perceived quality on interpolated content, with the best-performing metric, LPIPS, offering a SROCC value below 0.6. Our findings show that there is an urgent need to develop a bespoke perceptual quality metric for VFI. The BVI-VFI dataset is publicly available and can be accessed at https://danier97.github.io/BVI-VFI/.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame synthesis using deep voxel flow,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4463–4471.
  2. X. Xu, L. Siyao, W. Sun, Q. Yin, and M.-H. Yang, “Quadratic video interpolation,” in NeurIPS, 2019.
  3. D. Danier, F. Zhang, and D. Bull, “Spatio-temporal multi-flow network for video frame interpolation,” arXiv preprint arXiv:2111.15483, 2021.
  4. A. Mackin, F. Zhang, and D. R. Bull, “A study of subjective video quality at various frame rates,” in 2015 IEEE International Conference on Image Processing (ICIP).   IEEE, 2015, pp. 3407–3411.
  5. H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and J. Kautz, “Super slomo: High quality estimation of multiple intermediate frames for video interpolation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9000–9008.
  6. G. Lu, X. Zhang, and Z. Gao, “A novel framework of frame rate up conversion integrated within hevc coding.” in ICIP, 2016, pp. 4240–4244.
  7. D. Ding, X. Gao, C. Tang, and Z. Ma, “Neural reference synthesis for inter frame coding,” IEEE Transactions on Image Processing, 2021.
  8. S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive separable convolution,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 261–270.
  9. H. Lee, T. Kim, T.-y. Chung, D. Pak, Y. Ban, and S. Lee, “Adacof: Adaptive collaboration of flows for video frame interpolation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5316–5325.
  10. W. Bao, W.-S. Lai, X. Zhang, Z. Gao, and M.-H. Yang, “Memc-net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement,” IEEE transactions on pattern analysis and machine intelligence, 2019.
  11. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.
  12. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 586–595.
  13. F. Zhang, A. Mackin, and D. R. Bull, “A frame rate dependent video quality metric based on temporal wavelet decomposition and spatiotemporal pooling,” in 2017 IEEE International Conference on Image Processing (ICIP).   IEEE, 2017, pp. 300–304.
  14. P. C. Madhusudana, N. Birkbeck, Y. Wang, B. Adsumilli, and A. C. Bovik, “St-greed: Space-time generalized entropic differences for frame rate dependent video quality prediction,” IEEE Transactions on Image Processing, vol. 30, pp. 7446–7457, 2021.
  15. H. R. Sheikh, A. C. Bovik, and G. De Veciana, “An information fidelity criterion for image quality assessment using natural scene statistics,” IEEE Transactions on image processing, vol. 14, no. 12, pp. 2117–2128, 2005.
  16. Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara, “Toward a practical perceptual video quality metric,” The Netflix Tech Blog, vol. 6, no. 2, 2016.
  17. M. Choi, H. Kim, B. Han, N. Xu, and K. M. Lee, “Channel attention is all you need for video frame interpolation,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 10 663–10 671.
  18. A. Mackin, F. Zhang, and D. R. Bull, “A study of high frame rate video formats,” IEEE Transactions on Multimedia, vol. 21, no. 6, pp. 1499–1512, 2018.
  19. F. M. Moss, K. Wang, F. Zhang, R. Baddeley, and D. R. Bull, “On the optimal presentation duration for subjective video quality assessment,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 11, pp. 1977–1987, 2015.
  20. S. Winkler, “Analysis of public image and video databases for quality assessment,” IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 6, pp. 616–625, 2012.
  21. F. Zhang, F. M. Moss, R. Baddeley, and D. R. Bull, “Bvi-hd: A video quality database for hevc compressed and texture synthesized content,” IEEE Transactions on Multimedia, vol. 20, no. 10, pp. 2620–2630, 2018.
  22. D. Danier and D. Bull, “Texture-aware video frame interpolation,” in 2021 Picture Coding Symposium (PCS), 2021, pp. 1–5.
  23. R. ITU-R BT, “500-11, methodology for the subjective assessment of the quality of television pictures,”,” International Telecommunication Union, Tech. Rep, 2002.
  24. “Psychtoolbox-3,” https://github.com/Psychtoolbox-3/Psychtoolbox-3.
  25. Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2.   Ieee, 2003, pp. 1398–1402.
  26. V. Q. E. Group et al., “Final report from the video quality experts group on the validation of objective quality metrics for video quality assessment,” 2000.
  27. K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack, “Study of subjective and objective quality assessment of video,” IEEE transactions on Image Processing, vol. 19, no. 6, pp. 1427–1441, 2010.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com