Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vau da muntanialas: Energy-efficient multi-die scalable acceleration of RNN inference (2202.07462v1)

Published 14 Feb 2022 in cs.LG, cs.AI, cs.AR, cs.DC, cs.NE, and eess.SP

Abstract: Recurrent neural networks such as Long Short-Term Memories (LSTMs) learn temporal dependencies by keeping an internal state, making them ideal for time-series problems such as speech recognition. However, the output-to-input feedback creates distinctive memory bandwidth and scalability challenges in designing accelerators for RNNs. We present Muntaniala, an RNN accelerator architecture for LSTM inference with a silicon-measured energy-efficiency of 3.25$TOP/s/W$ and performance of 30.53$GOP/s$ in UMC 65 $nm$ technology. The scalable design of Muntaniala allows running large RNN models by combining multiple tiles in a systolic array. We keep all parameters stationary on every die in the array, drastically reducing the I/O communication to only loading new features and sharing partial results with other dies. For quantifying the overall system power, including I/O power, we built Vau da Muntanialas, to the best of our knowledge, the first demonstration of a systolic multi-chip-on-PCB array of RNN accelerator. Our multi-die prototype performs LSTM inference with 192 hidden states in 330$\mu s$ with a total system power of 9.0$mW$ at 10$MHz$ consuming 2.95$\mu J$. Targeting the 8/16-bit quantization implemented in Muntaniala, we show a phoneme error rate (PER) drop of approximately 3% with respect to floating-point (FP) on a 3L-384NH-123NI LSTM network on the TIMIT dataset.

Citations (5)

Summary

We haven't generated a summary for this paper yet.