Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Programs and Lyapunov Functions for Reinforcement Learning: A Unified Perspective on the Analysis of Value-Based Methods (2202.06922v1)

Published 14 Feb 2022 in math.OC, cs.LG, cs.SY, and eess.SY

Abstract: Value-based methods play a fundamental role in Markov decision processes (MDPs) and reinforcement learning (RL). In this paper, we present a unified control-theoretic framework for analyzing valued-based methods such as value computation (VC), value iteration (VI), and temporal difference (TD) learning (with linear function approximation). Built upon an intrinsic connection between value-based methods and dynamic systems, we can directly use existing convex testing conditions in control theory to derive various convergence results for the aforementioned value-based methods. These testing conditions are convex programs in form of either linear programming (LP) or semidefinite programming (SDP), and can be solved to construct Lyapunov functions in a straightforward manner. Our analysis reveals some intriguing connections between feedback control systems and RL algorithms. It is our hope that such connections can inspire more work at the intersection of system/control theory and RL.

Citations (2)

Summary

We haven't generated a summary for this paper yet.