Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional Neural Network with Convolutional Block Attention Module for Finger Vein Recognition (2202.06673v1)

Published 14 Feb 2022 in cs.CV

Abstract: Convolutional neural networks have become a popular research in the field of finger vein recognition because of their powerful image feature representation. However, most researchers focus on improving the performance of the network by increasing the CNN depth and width, which often requires high computational effort. Moreover, we can notice that not only the importance of pixels in different channels is different, but also the importance of pixels in different positions of the same channel is different. To reduce the computational effort and to take into account the different importance of pixels, we propose a lightweight convolutional neural network with a convolutional block attention module (CBAM) for finger vein recognition, which can achieve a more accurate capture of visual structures through an attention mechanism. First, image sequences are fed into a lightweight convolutional neural network we designed to improve visual features. Afterwards, it learns to assign feature weights in an adaptive manner with the help of a convolutional block attention module. The experiments are carried out on two publicly available databases and the results demonstrate that the proposed method achieves a stable, highly accurate, and robust performance in multimodal finger recognition.

Citations (8)

Summary

We haven't generated a summary for this paper yet.