Papers
Topics
Authors
Recent
2000 character limit reached

On Generalisation of Isotropic Central Difference for Higher Order Approximation of Fractional Laplacian

Published 13 Feb 2022 in math.NA and cs.NA | (2202.06333v1)

Abstract: The study of generalising the central difference for integer order Laplacian to fractional order is discussed in this paper. Analysis shows that, in contrary to the conclusion of a previous study, difference stencils evaluated through fast Fourier transform prevents the convergence of the solution of fractional Laplacian. We propose a composite quadrature rule in order to efficiently evaluate the stencil coefficients with the required convergence rate in order to guarantee convergence of the solution. Furthermore, we propose the use of generalised higher order lattice Boltzmann method to generate stencils which can approximate fractional Laplacian with higher order convergence speed and error isotropy. We also review the formulation of the lattice Boltzmann method and discuss the explicit sparse solution formulated using Smolyak's algorithm, as well as the method for the evaluation of the Hermite polynomials for efficient generation of the higher order stencils. Numerical experiments are carried out to verify the error analysis and formulations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.