Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operator identities on Lie algebras, rewriting systems and Gröbner-Shirshov bases (2202.05914v1)

Published 11 Feb 2022 in math.QA and math.RA

Abstract: Motivated by the pivotal role played by linear operators, many years ago Rota proposed to determine algebraic operator identities satisfied by linear operators on associative algebras, later called Rota's program on algebraic operators. Recent progresses on this program have been achieved in the contexts of operated algebra, rewriting systems and Groebner-Shirshov bases. These developments also suggest that Rota's insight can be applied to determine operator identities on Lie algebras, and thus to put the various linear operators on Lie algebras in a uniform perspective. This paper carries out this approach, utilizing operated polynomial Lie algebras spanned by non-associative Lyndon-Shirshov bracketed words. The Lie algebra analog of Rota's program was formulated in terms convergent rewriting systems and equivalently in terms of Groebner-Shirshov bases. This Lie algebra analog is shown to be compatible with Rota's program for associative algebras. As applications, a classification of differential type operators and Rota-Baxter operators are presented.

Summary

We haven't generated a summary for this paper yet.