Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Source Matching and Rewriting (2202.04153v1)

Published 5 Feb 2022 in cs.PL

Abstract: A typical compiler flow relies on a uni-directional sequence of translation/optimization steps that lower the program abstract representation, making it hard to preserve higher-level program information across each transformation step. On the other hand, modern ISA extensions and hardware accelerators can benefit from the compiler's ability to detect and raise program idioms to acceleration instructions or optimized library calls. Although recent works based on Multi-Level IR (MLIR) have been proposed for code raising, they rely on specialized languages, compiler recompilation, or in-depth dialect knowledge. This paper presents Source Matching and Rewriting (SMR), a user-oriented source-code-based approach for MLIR idiom matching and rewriting that does not require a compiler expert's intervention. SMR uses a two-phase automaton-based DAG-matching algorithm inspired by early work on tree-pattern matching. First, the idiom Control-Dependency Graph (CDG) is matched against the program's CDG to rule out code fragments that do not have a control-flow structure similar to the desired idiom. Second, candidate code fragments from the previous phase have their Data-Dependency Graphs (DDGs) constructed and matched against the idiom DDG. Experimental results show that SMR can effectively match idioms from Fortran (FIR) and C (CIL) programs while raising them as BLAS calls to improve performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Vinicius Couto (1 paper)
  2. Luciano Zago (1 paper)
  3. Hervé Yviquel (2 papers)
  4. Guido Araújo (1 paper)

Summary

We haven't generated a summary for this paper yet.