Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classifying the globally rigid edge-transitive graphs and distance-regular graphs in the plane (2202.03965v2)

Published 8 Feb 2022 in math.CO

Abstract: A graph is said to be globally rigid if almost all embeddings of the graph's vertices in the Euclidean plane will define a system of edge-length equations with a unique (up to isometry) solution. In 2007, Jackson, Servatius and Servatius characterised exactly which vertex-transitive graphs are globally rigid solely by their degree and maximal clique number, two easily computable parameters for vertex-transitive graphs. In this short note we will extend this characterisation to all graphs that are determined by their automorphism group. We do this by characterising exactly which edge-transitive graphs and distance-regular graphs are globally rigid by their minimal and maximal degrees.

Summary

We haven't generated a summary for this paper yet.