Continuous permanent unobserved heterogeneity in dynamic discrete choice models (2202.03960v3)
Abstract: In dynamic discrete choice (DDC) analysis, it is common to use mixture models to control for unobserved heterogeneity. However, consistent estimation typically requires both restrictions on the support of unobserved heterogeneity and a high-level injectivity condition that is difficult to verify. This paper provides primitive conditions for point identification of a broad class of DDC models with multivariate continuous permanent unobserved heterogeneity. The results apply to both finite- and infinite-horizon DDC models, do not require a full support assumption, nor a long panel, and place no parametric restriction on the distribution of unobserved heterogeneity. In addition, I propose a seminonparametric estimator that is computationally attractive and can be implemented using familiar parametric methods.