Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised physics-informed disentanglement of multimodal data for high-throughput scientific discovery (2202.03242v1)

Published 7 Feb 2022 in cs.LG and stat.ML

Abstract: We introduce physics-informed multimodal autoencoders (PIMA) - a variational inference framework for discovering shared information in multimodal scientific datasets representative of high-throughput testing. Individual modalities are embedded into a shared latent space and fused through a product of experts formulation, enabling a Gaussian mixture prior to identify shared features. Sampling from clusters allows cross-modal generative modeling, with a mixture of expert decoder imposing inductive biases encoding prior scientific knowledge and imparting structured disentanglement of the latent space. This approach enables discovery of fingerprints which may be detected in high-dimensional heterogeneous datasets, avoiding traditional bottlenecks related to high-fidelity measurement and characterization. Motivated by accelerated co-design and optimization of materials manufacturing processes, a dataset of lattice metamaterials from metal additive manufacturing demonstrates accurate cross modal inference between images of mesoscale topology and mechanical stress-strain response.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com