Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OPP-Miner: Order-preserving sequential pattern mining (2202.03140v2)

Published 9 Jan 2022 in cs.DB and cs.AI

Abstract: A time series is a collection of measurements in chronological order. Discovering patterns from time series is useful in many domains, such as stock analysis, disease detection, and weather forecast. To discover patterns, existing methods often convert time series data into another form, such as nominal/symbolic format, to reduce dimensionality, which inevitably deviates the data values. Moreover, existing methods mainly neglect the order relationships between time series values. To tackle these issues, inspired by order-preserving matching, this paper proposes an Order-Preserving sequential Pattern (OPP) mining method, which represents patterns based on the order relationships of the time series data. An inherent advantage of such representation is that the trend of a time series can be represented by the relative order of the values underneath the time series data. To obtain frequent trends in time series, we propose the OPP-Miner algorithm to mine patterns with the same trend (sub-sequences with the same relative order). OPP-Miner employs the filtration and verification strategies to calculate the support and uses pattern fusion strategy to generate candidate patterns. To compress the result set, we also study finding the maximal OPPs. Experiments validate that OPP-Miner is not only efficient and scalable but can also discover similar sub-sequences in time series. In addition, case studies show that our algorithms have high utility in analyzing the COVID-19 epidemic by identifying critical trends and improve the clustering performance.

Citations (22)

Summary

We haven't generated a summary for this paper yet.