Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Building Synthetic Speaker Profiles in Text-to-Speech Systems (2202.03125v1)

Published 7 Feb 2022 in eess.AS and cs.SD

Abstract: The diversity of speaker profiles in multi-speaker TTS systems is a crucial aspect of its performance, as it measures how many different speaker profiles TTS systems could possibly synthesize. However, this important aspect is often overlooked when building multi-speaker TTS systems and there is no established framework to evaluate this diversity. The reason behind is that most multi-speaker TTS systems are limited to generate speech signals with the same speaker profiles as its training data. They often use discrete speaker embedding vectors which have a one-to-one correspondence with individual speakers. This correspondence limits TTS systems and hinders their capability of generating unseen speaker profiles that did not appear during training. In this paper, we aim to build multi-speaker TTS systems that have a greater variety of speaker profiles and can generate new synthetic speaker profiles that are different from training data. To this end, we propose to use generative models with a triplet loss and a specific shuffle mechanism. In our experiments, the effectiveness and advantages of the proposed method have been demonstrated in terms of both the distinctiveness and intelligibility of synthesized speech signals.

Citations (2)

Summary

We haven't generated a summary for this paper yet.