Papers
Topics
Authors
Recent
Search
2000 character limit reached

To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment

Published 7 Feb 2022 in cs.CL and cs.LG | (2202.03120v1)

Abstract: There has been mounting evidence that pretrained LLMs fine-tuned on large and diverse supervised datasets can transfer well to a variety of out-of-domain tasks. In this work, we investigate this transfer ability to the legal domain. For that, we participated in the legal case entailment task of COLIEE 2021, in which we use such models with no adaptations to the target domain. Our submissions achieved the highest scores, surpassing the second-best team by more than six percentage points. Our experiments confirm a counter-intuitive result in the new paradigm of pretrained LLMs: given limited labeled data, models with little or no adaptation to the target task can be more robust to changes in the data distribution than models fine-tuned on it. Code is available at https://github.com/neuralmind-ai/coliee.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.