Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Residual Shrinkage Networks for EMG-based Gesture Identification (2202.02984v3)

Published 7 Feb 2022 in eess.SP and cs.LG

Abstract: This work introduces a method for high-accuracy EMG based gesture identification. A newly developed deep learning method, namely, deep residual shrinkage network is applied to perform gesture identification. Based on the feature of EMG signal resulting from gestures, optimizations are made to improve the identification accuracy. Finally, three different algorithms are applied to compare the accuracy of EMG signal recognition with that of DRSN. The result shows that DRSN excel traditional neural networks in terms of EMG recognition accuracy. This paper provides a reliable way to classify EMG signals, as well as exploring possible applications of DRSN.

Citations (2)

Summary

We haven't generated a summary for this paper yet.