Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking ValueDice: Does It Really Improve Performance? (2202.02468v2)

Published 5 Feb 2022 in cs.LG

Abstract: Since the introduction of GAIL, adversarial imitation learning (AIL) methods attract lots of research interests. Among these methods, ValueDice has achieved significant improvements: it beats the classical approach Behavioral Cloning (BC) under the offline setting, and it requires fewer interactions than GAIL under the online setting. Are these improvements benefited from more advanced algorithm designs? We answer this question by the following conclusions. First, we show that ValueDice could reduce to BC under the offline setting. Second, we verify that overfitting exists and regularization matters in the low-data regime. Specifically, we demonstrate that with weight decay, BC also nearly matches the expert performance as ValueDice does. The first two claims explain the superior offline performance of ValueDice. Third, we establish that ValueDice does not work when the expert trajectory is subsampled. Instead, the mentioned success of ValueDice holds when the expert trajectory is complete, in which ValueDice is closely related to BC that performs well as mentioned. Finally, we discuss the implications of our research for imitation learning studies beyond ValueDice.

Citations (16)

Summary

We haven't generated a summary for this paper yet.