Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Interpretable, High-Performing Policies for Autonomous Driving

Published 4 Feb 2022 in cs.LG and cs.RO | (2202.02352v3)

Abstract: Gradient-based approaches in reinforcement learning (RL) have achieved tremendous success in learning policies for autonomous vehicles. While the performance of these approaches warrants real-world adoption, these policies lack interpretability, limiting deployability in the safety-critical and legally-regulated domain of autonomous driving (AD). AD requires interpretable and verifiable control policies that maintain high performance. We propose Interpretable Continuous Control Trees (ICCTs), a tree-based model that can be optimized via modern, gradient-based, RL approaches to produce high-performing, interpretable policies. The key to our approach is a procedure for allowing direct optimization in a sparse decision-tree-like representation. We validate ICCTs against baselines across six domains, showing that ICCTs are capable of learning interpretable policy representations that parity or outperform baselines by up to 33% in AD scenarios while achieving a 300x-600x reduction in the number of policy parameters against deep learning baselines. Furthermore, we demonstrate the interpretability and utility of our ICCTs through a 14-car physical robot demonstration.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.