Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lossy Planarization: A Constant-Factor Approximate Kernelization for Planar Vertex Deletion (2202.02174v1)

Published 4 Feb 2022 in cs.DS and cs.CC

Abstract: In the F-minor-free deletion problem we want to find a minimum vertex set in a given graph that intersects all minor models of graphs from the family F. The Vertex planarization problem is a special case of F-minor-free deletion for the family F = {K_5, K_{3,3}}. Whenever the family F contains at least one planar graph, then F-minor-free deletion is known to admit a constant-factor approximation algorithm and a polynomial kernelization [Fomin, Lokshtanov, Misra, and Saurabh, FOCS'12]. The Vertex planarization problem is arguably the simplest setting for which F does not contain a planar graph and the existence of a constant-factor approximation or a polynomial kernelization remains a major open problem. In this work we show that Vertex planarization admits an algorithm which is a combination of both approaches. Namely, we present a polynomial A-approximate kernelization, for some constant A > 1, based on the framework of lossy kernelization [Lokshtanov, Panolan, Ramanujan, and Saurabh, STOC'17]. Simply speaking, when given a graph G and integer k, we show how to compute a graph G' on poly(k) vertices so that any B-approximate solution to G' can be lifted to an (A*B)-approximate solution to G, as long as A*B*OPT(G) <= k. In order to achieve this, we develop a framework for sparsification of planar graphs which approximately preserves all separators and near-separators between subsets of the given terminal set. Our result yields an improvement over the state-of-art approximation algorithms for Vertex planarization. The problem admits a polynomial-time O(neps)-approximation algorithm, for any eps > 0, and a quasi-polynomial-time (log n)O(1) approximation algorithm, both randomized [Kawarabayashi and Sidiropoulos, FOCS'17]. By pipelining these algorithms with our approximate kernelization, we improve the approximation factors to respectively O(OPTeps) and (log OPT)O(1).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bart M. P. Jansen (56 papers)
  2. Michał Włodarczyk (29 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.