Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Research on Patch Attentive Neural Process (2202.01884v1)

Published 29 Jan 2022 in cs.CV

Abstract: Attentive Neural Process (ANP) improves the fitting ability of Neural Process (NP) and improves its prediction accuracy, but the higher time complexity of the model imposes a limitation on the length of the input sequence. Inspired by models such as Vision Transformer (ViT) and Masked Auto-Encoder (MAE), we propose Patch Attentive Neural Process (PANP) using image patches as input and improve the structure of deterministic paths based on ANP, which allows the model to extract image features more accurately and efficiently reconstruction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.