Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noisy Sorting Capacity (2202.01446v3)

Published 3 Feb 2022 in cs.IT and math.IT

Abstract: Sorting is the task of ordering $n$ elements using pairwise comparisons. It is well known that $m=\Theta(n\log n)$ comparisons are both necessary and sufficient when the outcomes of the comparisons are observed with no noise. In this paper, we study the sorting problem when each comparison is incorrect with some fixed yet unknown probability $p$. Unlike the common approach in the literature which aims to minimize the number of pairwise comparisons $m$ to achieve a given desired error probability, we consider randomized algorithms with expected number of queries $\textsf{E}[M]$ and aim at characterizing the maximal sorting rate $\frac{n\log n}{\textsf{E}[M]}$ such that the ordering of the elements can be estimated with a vanishing error probability asymptotically. The maximal rate is referred to as the noisy sorting capacity. In this work, we derive upper and lower bounds on the noisy sorting capacity. The two lower bounds -- one for fixed-length algorithms and one for variable-length algorithms -- are established by combining the insertion sort algorithm with the well-known Burnashev--Zigangirov algorithm for channel coding with feedback. Compared with existing methods, the proposed algorithms are universal in the sense that they do not require the knowledge of $p$, while maintaining a strictly positive sorting rate. Moreover, we derive a general upper bound on the noisy sorting capacity, along with an upper bound on the maximal rate that can be achieved by sorting algorithms that are based on insertion sort.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com