Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A semi-static replication approach to efficient hedging and pricing of callable IR derivatives (2202.01027v1)

Published 2 Feb 2022 in q-fin.CP

Abstract: We present a semi-static hedging algorithm for callable interest rate derivatives under an affine, multi-factor term-structure model. With a traditional dynamic hedge, the replication portfolio needs to be updated continuously through time as the market moves. In contrast, we propose a semi-static hedge that needs rebalancing on just a finite number of instances. We show, taking as an example Bermudan swaptions, that callable interest rate derivatives can be replicated with an options portfolio written on a basket of discount bonds. The static portfolio composition is obtained by regressing the target option's value using an interpretable, artificial neural network. Leveraging on the approximation power of neural networks, we prove that the hedging error can be arbitrarily small for a sufficiently large replication portfolio. A direct, a lower bound, and an upper bound estimator for the risk-neutral Bermudan swaption price is inferred from the hedging algorithm. Additionally, closed-form error margins to the price statistics are determined. We practically demonstrate the hedging and pricing performance through several numerical experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets