Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Insights on Target Speaker Extraction (2202.00733v2)

Published 1 Feb 2022 in eess.AS and cs.SD

Abstract: Speaker extraction (SE) aims to segregate the speech of a target speaker from a mixture of interfering speakers with the help of auxiliary information. Several forms of auxiliary information have been employed in single-channel SE, such as a speech snippet enrolled from the target speaker or visual information corresponding to the spoken utterance. The effectiveness of the auxiliary information in SE is typically evaluated by comparing the extraction performance of SE with uninformed speaker separation (SS) methods. Following this evaluation protocol, many SE studies have reported performance improvement compared to SS, attributing this to the auxiliary information. However, such studies have been conducted on a few datasets and have not considered recent deep neural network architectures for SS that have shown impressive separation performance. In this paper, we examine the role of the auxiliary information in SE for different input scenarios and over multiple datasets. Specifically, we compare the performance of two SE systems (audio-based and video-based) with SS using a common framework that utilizes the recently proposed dual-path recurrent neural network as the main learning machine. Experimental evaluation on various datasets demonstrates that the use of auxiliary information in the considered SE systems does not always lead to better extraction performance compared to the uninformed SS system. Furthermore, we offer insights into the behavior of the SE systems when provided with different and distorted auxiliary information given the same mixture input.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
Citations (16)

Summary

We haven't generated a summary for this paper yet.