Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence, uniqueness and exponential ergodicity under Lyapunov conditions for McKean-Vlasov SDEs with Markovian switching (2202.00427v1)

Published 1 Feb 2022 in math.PR and math.DS

Abstract: The paper is dedicated to studying the problem of existence and uniqueness of solutions as well as existence of and exponential convergence to invariant measures for McKean-Vlasov stochastic differential equations with Markovian switching. Since the coefficients are only locally Lipschitz, we need to truncate them both in space and distribution variables simultaneously to get the global existence of solutions under the Lyapunov condition. Furthermore, if the Lyapunov condition is strengthened, we establish the exponential convergence of solutions' distributions to the unique invariant measure in Wasserstein quasi-distance and total variation distance, respectively. Finally, we give two applications to illustrate our theoretical results.

Summary

We haven't generated a summary for this paper yet.