A lower bound on the space overhead of fault-tolerant quantum computation (2202.00119v2)
Abstract: The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation stating that arbitrarily long quantum computations can be performed with a polylogarithmic overhead provided the noise level is below a constant level. A recent work by Fawzi, Grospellier and Leverrier (FOCS 2018) building on a result by Gottesman (QIC 2013) has shown that the space overhead can be asymptotically reduced to a constant independent of the circuit provided we only consider circuits with a length bounded by a polynomial in the width. In this work, using a minimal model for quantum fault tolerance, we establish a general lower bound on the space overhead required to achieve fault tolerance. For any non-unitary qubit channel $\mathcal{N}$ and any quantum fault tolerance schemes against $\mathrm{i.i.d.}$ noise modeled by $\mathcal{N}$, we prove a lower bound of $\max\left{\mathrm{Q}(\mathcal{N}){-1}n,\alpha_\mathcal{N} \log T\right}$ on the number of physical qubits, for circuits of length $T$ and width $n$. Here, $\mathrm{Q}(\mathcal{N})$ denotes the quantum capacity of $\mathcal{N}$ and $\alpha_\mathcal{N}>0$ is a constant only depending on the channel $\mathcal{N}$. In our model, we allow for qubits to be replaced by fresh ones during the execution of the circuit and we allow classical computation to be free and perfect. This improves upon results that assumed classical computations to be also affected by noise, and that sometimes did not allow for fresh qubits to be added. Along the way, we prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude damping noise resolving a conjecture by Ben-Or, Gottesman, and Hassidim (2013).
- Fault-tolerant quantum computation with constant error. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’97, pages 176–188, New York, NY, USA, 1997. Association for Computing Machinery. doi:10.1145/258533.258579.
- Limitations of noisy reversible computation. Technical Report arXiv:9611028 [quant-ph], arXiv.org, https://arxiv.org/abs/quant-ph/9611028, 1996.
- Quantum accuracy threshold for concatenated distance-3 codes. Quantum Info. Comput., 6(2):97–165, March 2006.
- Accuracy threshold for postselected quantum computation. Quantum Info. Comput., 8(3):181–244, March 2008.
- Fault-tolerant quantum computation against biased noise. Phys. Rev. A, 78:052331, Nov 2008. URL: https://link.aps.org/doi/10.1103/PhysRevA.78.052331, doi:10.1103/PhysRevA.78.052331.
- Fibonacci scheme for fault-tolerant quantum computation. Phys. Rev. A, 79:012332, Jan 2009. URL: https://link.aps.org/doi/10.1103/PhysRevA.79.012332, doi:10.1103/PhysRevA.79.012332.
- On quantum fidelities and channel capacities. IEEE Transactions on Information Theory, 46(4):1317–1329, Jul 2000. URL: http://dx.doi.org/10.1109/18.850671, doi:10.1109/18.850671.
- On the complexity of computing zero-error and holevo capacity of quantum channels. arXiv preprint arXiv:0709.2090, 2007.
- Quantum refrigerator. arXiv preprint arXiv:1301.1995, 2013.
- Mixed-state entanglement and quantum error correction. Physical Review A, 54(5):3824–3851, Nov 1996. URL: http://dx.doi.org/10.1103/PhysRevA.54.3824, doi:10.1103/physreva.54.3824.
- An analysis of completely-positive trace-preserving maps on m2. Linear Algebra and its Applications, 347(1):159–187, 2002. URL: https://www.sciencedirect.com/science/article/pii/S002437950100547X, doi:https://doi.org/10.1016/S0024-3795(01)00547-X.
- Fault-tolerant quantum computation with asymmetric bacon-shor codes. Phys. Rev. A, 87:032310, Mar 2013. URL: https://link.aps.org/doi/10.1103/PhysRevA.87.032310, doi:10.1103/PhysRevA.87.032310.
- Poking holes and cutting corners to achieve clifford gates with the surface code. Phys. Rev. X, 7:021029, May 2017. URL: https://link.aps.org/doi/10.1103/PhysRevX.7.021029, doi:10.1103/PhysRevX.7.021029.
- Quantum memories at finite temperature. Rev. Mod. Phys., 88:045005, Nov 2016. URL: https://link.aps.org/doi/10.1103/RevModPhys.88.045005, doi:10.1103/RevModPhys.88.045005.
- Optimal universal and state-dependent quantum cloning. Phys. Rev. A, 57:2368–2378, Apr 1998. URL: https://link.aps.org/doi/10.1103/PhysRevA.57.2368, doi:10.1103/PhysRevA.57.2368.
- New limits on fault-tolerant quantum computation. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages 411–419, 2006. doi:10.1109/FOCS.2006.50.
- Roads towards fault-tolerant universal quantum computation. Nature, 549(7671):172–179, Sep 2017. URL: http://dx.doi.org/10.1038/nature23460, doi:10.1038/nature23460.
- Man-Duen Choi. Completely positive linear maps on complex matrices. Linear Algebra and its Applications, 10(3):285–290, 1975. URL: https://www.sciencedirect.com/science/article/pii/0024379575900750, doi:https://doi.org/10.1016/0024-3795(75)90075-0.
- Superactivation of the asymptotic zero-error classical capacity of a quantum channel. IEEE transactions on information theory, 57(12):8114–8126, 2011. doi:10.1109/TIT.2011.2169109.
- Topological quantum memory. Journal of Mathematical Physics, 43(9):4452–4505, 2002. arXiv:https://doi.org/10.1063/1.1499754, doi:10.1063/1.1499754.
- Roland L. Dobrushin. Central limit theorem for nonstationary markov chains. i. Theory of Probability & Its Applications, 1(1):65–80, 1956. arXiv:https://doi.org/10.1137/1101006, doi:10.1137/1101006.
- Runyao Duan. Super-activation of zero-error capacity of noisy quantum channels. arXiv preprint arXiv:0906.2527, 2009.
- Zero-error communication via quantum channels, noncommutative graphs, and a quantum lovász number. IEEE Transactions on Information Theory, 59(2):1164–1174, 2012. doi:10.1109/TIT.2012.2221677.
- Signal propagation and noisy circuits. IEEE Transactions on Information Theory, 45(7):2367–2373, 1999. doi:10.1109/18.796377.
- On the maximum tolerable noise of k-input gates for reliable computation by formulas. IEEE Transactions on Information Theory, 49(11):3094–3098, 2003. doi:10.1109/TIT.2003.818405.
- Constant overhead quantum fault-tolerance with quantum expander codes. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 743–754. IEEE, 2018.
- Daniel Gottesman. Fault-tolerant quantum computation with constant overhead. Quantum Info. Comput., 14(15-16):1338–1372, November 2014.
- Repetition cat qubits for fault-tolerant quantum computation. Phys. Rev. X, 9:041053, Dec 2019. URL: https://link.aps.org/doi/10.1103/PhysRevX.9.041053, doi:10.1103/PhysRevX.9.041053.
- Quantum Rényi and f𝑓fitalic_f-divergences from integral representations. arXiv preprint arXiv:2306.12343, 2023.
- Surface code quantum computing by lattice surgery. New Journal of Physics, 14(12):123011, dec 2012. doi:10.1088/1367-2630/14/12/123011.
- Upper bounds on the noise threshold for fault-tolerant quantum computing. Quantum Info. Comput., 10(5):361–376, May 2010.
- Alexey Yu Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52(6):1191–1249, dec 1997. doi:10.1070/rm1997v052n06abeh002155.
- Alexey Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, 2003. URL: https://www.sciencedirect.com/science/article/pii/S0003491602000180, doi:https://doi.org/10.1016/S0003-4916(02)00018-0.
- Emanuel Knill. Quantum computing with realistically noisy devices. Nature, 434(7029):39–44, Mar 2005. URL: http://dx.doi.org/10.1038/nature03350, doi:10.1038/nature03350.
- Resilient quantum computation: error models and thresholds. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1969):365–384, Jan 1998. URL: http://dx.doi.org/10.1098/rspa.1998.0166, doi:10.1098/rspa.1998.0166.
- Continuity of quantum channel capacities. Communications in Mathematical Physics, 292(1):201–215, May 2009. URL: http://dx.doi.org/10.1007/s00220-009-0833-1, doi:10.1007/s00220-009-0833-1.
- Quantum zero-error capacity. International Journal of Quantum Information, 3(01):135–139, 2005. doi:10.1142/S0219749905000682.
- Relative entropy convergence for depolarizing channels. Journal of Mathematical Physics, 57(2):022202, 2016. doi:10.1063/1.4939560.
- Zero-error classical capacity of qubit channels cannot be superactivated. Physical Review A, 85(5):052321, 2012. doi:10.1103/PhysRevA.85.052321.
- Stefano Pirandola. End-to-end capacities of a quantum communication network. Communications Physics, 2(1):51, May 2019. doi:10.1038/s42005-019-0147-3.
- Maxim Raginsky. Strictly contractive quantum channels and physically realizable quantum computers. Phys. Rev. A, 65:032306, Feb 2002. URL: https://link.aps.org/doi/10.1103/PhysRevA.65.032306, doi:10.1103/PhysRevA.65.032306.
- Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett., 98:190504, May 2007. URL: https://link.aps.org/doi/10.1103/PhysRevLett.98.190504, doi:10.1103/PhysRevLett.98.190504.
- Alexander A. Razborov. An upper bound on the threshold quantum decoherence rate. Quantum Info. Comput., 4(3):222–228, May 2004.
- Mary Beth Ruskai. Beyond strong subadditivity? improved bounds on the contraction of generalized relative entropy. Reviews in Mathematical Physics, 6(05a):1147–1161, 1994. doi:10.1142/s0129055x94000407.
- Asymmetric quantum codes: constructions, bounds and performance. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465(2105):1645–1672, 2009. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2008.0439, arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2008.0439, doi:10.1098/rspa.2008.0439.
- On superactivation of zero-error capacities and reversibility of a quantum channel. Communications in Mathematical Physics, 335(3):1159–1179, 2015. doi:10.1007/s00220-015-2345-5.
- Peter W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 52:R2493–R2496, Oct 1995. URL: https://link.aps.org/doi/10.1103/PhysRevA.52.R2493, doi:10.1103/PhysRevA.52.R2493.
- Peter W. Shor. Fault-tolerant quantum computation. In Proceedings of 37th Conference on Foundations of Computer Science, pages 56–65, 1996. doi:10.1109/SFCS.1996.548464.
- Andrew M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett., 77:793–797, Jul 1996. URL: https://link.aps.org/doi/10.1103/PhysRevLett.77.793, doi:10.1103/PhysRevLett.77.793.
- The χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-divergence and mixing times of quantum markov processes. Journal of Mathematical Physics, 51(12):122201, 2010. doi:10.1063/1.3511335.
- Barbara M. Terhal. Quantum error correction for quantum memories. Rev. Mod. Phys., 87:307–346, Apr 2015. URL: https://link.aps.org/doi/10.1103/RevModPhys.87.307, doi:10.1103/RevModPhys.87.307.
- Ultrahigh error threshold for surface codes with biased noise. Phys. Rev. Lett., 120:050505, Jan 2018. URL: https://link.aps.org/doi/10.1103/PhysRevLett.120.050505, doi:10.1103/PhysRevLett.120.050505.
- Classical simulability, entanglement breaking, and quantum computation thresholds. Phys. Rev. A, 71:042328, Apr 2005. URL: https://link.aps.org/doi/10.1103/PhysRevA.71.042328, doi:10.1103/PhysRevA.71.042328.
- Confinement-higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory. Annals of Physics, 303(1):31–58, 2003. URL: https://www.sciencedirect.com/science/article/pii/S0003491602000192, doi:https://doi.org/10.1016/S0003-4916(02)00019-2.
- Surface code quantum computing with error rates over 1%. Physical Review A, 83(2), Feb 2011. URL: http://dx.doi.org/10.1103/PhysRevA.83.020302, doi:10.1103/physreva.83.020302.
- John Watrous. Semidefinite programs for completely bounded norms. arXiv preprint arXiv:0901.4709, 2009.
- John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. doi:10.1017/9781316848142.
- Experimental demonstration of topological error correction. Nature, 482(7386):489–494, Feb 2012. URL: http://dx.doi.org/10.1038/nature10770, doi:10.1038/nature10770.