Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kirchhoff type elliptic equations with double criticality in Musielak-Sobolev spaces (2202.00072v3)

Published 31 Jan 2022 in math.AP

Abstract: This paper aims to establish the existence of a weak solution for the non-local problem: \begin{equation*} \left{\begin{array}{ll} -a\left(\int_{\Omega}\mathcal{H}(x,|\nabla u|)dx \right) \Delta_{\mathcal{H}}u &=f(x,u) \ \ \hbox{in} \ \ \Omega, \ \ \ \ \hspace{3.3cm} u &= 0 \ \ \hbox{on} \ \ \partial \Omega, \end{array}\right. \end{equation*} where $\Omega\subseteq \mathbb{R}{N},\, N\geq 2$ is a bounded and smooth domain containing two open and connected subsets $\Omega_p$ and $\Omega_N$ such that $ \bar{\Omega}{p}\cap\bar{\Omega}{N}=\emptyset$ and $\Delta_{\mathcal{H}}u=\hbox{div}( h(x,|\nabla u|)\nabla u)$ is the $\mathcal{H}$-Laplace operator. We assume that $\Delta_{\mathcal{H}}$ reduces to $ \Delta_{p(x)}$ in $\Omega_{p}$ and to $ \Delta_{N}$ in $\Omega_{N},$ the non-linear function $f:\Omega\times\mathbb{R}\rightarrow \mathbb{R}$ act as $|t|{p{\ast}(x)-2}t$ on $\Omega_{p}$ and as $e{\alpha|t|{N/(N-1)}}$ on $\Omega_{N}$ for sufficiently large $|t|$. To establish our existence results in a Musielak-Sobolev space, we use a variational technique based on the mountain pass theorem.

Summary

We haven't generated a summary for this paper yet.