Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BREAK: Bronchi Reconstruction by gEodesic transformation And sKeleton embedding (2202.00002v1)

Published 29 Jan 2022 in eess.IV and cs.CV

Abstract: Airway segmentation is critical for virtual bronchoscopy and computer-aided pulmonary disease analysis. In recent years, convolutional neural networks (CNNs) have been widely used to delineate the bronchial tree. However, the segmentation results of the CNN-based methods usually include many discontinuous branches, which need manual repair in clinical use. A major reason for the breakages is that the appearance of the airway wall can be affected by the lung disease as well as the adjacency of the vessels, while the network tends to overfit to these special patterns in the training set. To learn robust features for these areas, we design a multi-branch framework that adopts the geodesic distance transform to capture the intensity changes between airway lumen and wall. Another reason for the breakages is the intra-class imbalance. Since the volume of the peripheral bronchi may be much smaller than the large branches in an input patch, the common segmentation loss is not sensitive to the breakages among the distal branches. Therefore, in this paper, a breakage-sensitive regularization term is designed and can be easily combined with other loss functions. Extensive experiments are conducted on publicly available datasets. Compared with state-of-the-art methods, our framework can detect more branches while maintaining competitive segmentation performance.

Citations (19)

Summary

We haven't generated a summary for this paper yet.