Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of Naturalistic Field Acoustic Environments on Forensic Text-independent Speaker Verification System (2201.13246v1)

Published 28 Jan 2022 in eess.AS and cs.SD

Abstract: Audio analysis for forensic speaker verification offers unique challenges in system performance due in part to data collected in naturalistic field acoustic environments where location/scenario uncertainty is common in the forensic data collection process. Forensic speech data as potential evidence can be obtained in random naturalistic environments resulting in variable data quality. Speech samples may include variability due to vocal efforts such as yelling over 911 emergency calls, whereas others might be whisper or situational stressed voice in a field location or interview room. Such speech variability consists of intrinsic and extrinsic characteristics and makes forensic speaker verification a complicated and daunting task. Extrinsic properties include recording equipment such as microphone type and placement, ambient noise, room configuration including reverberation, and other environmental scenario-based issues. Some factors, such as noise and non-target speech, will impact the verification system performance by their mere presence. To investigate the impact of field acoustic environments, we performed a speaker verification study based on the CRSS-Forensic corpus with audio collected from 8 field locations including police interviews. This investigation includes an analysis of the impact of seven unseen acoustic environments on speaker verification system performance using an x-Vector system.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhenyu Wang (150 papers)
  2. John H. L. Hansen (58 papers)

Summary

We haven't generated a summary for this paper yet.