Papers
Topics
Authors
Recent
Search
2000 character limit reached

Commuting Tuple of Multiplication Operators Homogeneous under the Unitary Group

Published 31 Jan 2022 in math.FA | (2201.13228v2)

Abstract: Let $\mathcal U(d)$ be the group of $d\times d$ unitary matrices. We find conditions to ensure that a $\mathcal U(d)$-homogeneous $d$-tuple $\boldsymbol T$ is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space $\mathcal H_K(\mathbb B_d, \mathbb Cn) \subseteq \mbox{\rm Hol}(\mathbb B_d, \mathbb Cn)$, $n= \dim \cap_{j=1}d \ker T*_{j}.$ We describe this class of $\mathcal U(d)$-homogeneous operators, equivalently, non-negative kernels $K$ quasi-invariant under the action of $\mathcal U(d)$. We classify quasi-invariant kernels $K$ transforming under $\mathcal U(d)$ with two specific choice of multipliers. A crucial ingredient of the proof is that the group $SU(d)$ has exactly two inequivalent irreducible unitary representations of dimension $d$ and none in dimensions $2, \ldots , d-1$, $d\geq 3$. We obtain explicit criterion for boundedness, reducibility and mutual unitary equivalence among these operators.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.